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Abstract

This work shows that the Fourier number (Fo) defines the shape and amplitude of the thermal response of a semi-

infinite layer sample. The introduction of the responsivity, Rs, of the TTR method provides the ability to assess the

performance of the thermal conductivity measurements. A simplified heat transfer analysis of a finite layer sample

revealed that the properties ratio, ðqCpKÞS=ðqCpKÞL, and the layer thickness, h=dP, uniquely define both temperature

response and measurement responsivity. If the material under test is the substrate, this work can help improve the

measurement accuracy by selecting the appropriate thickness of the top layer. If the material is a layer on top of a

known substrate, this work suggests that the accuracy of the TTR measurements can be fully maximized.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The high rate of innovation in the electronics and

telecommunications fields has raised expectations for

increased performance and functionality. Most advances

have evolved from smart engineering and efficient

manufacturing practices. Equally substantial gains,

however, can be made from the introduction of inno-

vative materials. Indeed, miniaturization and perfor-

mance requirements have forced the use of existing

materials beyond initially envisioned ranges and have

spurred the development of special materials [1].

Knowledge of material properties is fundamental to the

design process, especially for electronic and telecom-

munication devices, where performance depends heavily

on electro-thermal interactions.
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Higher performance is only possible by significant

reductions in the size of active features, which in turn

can increase heat generation densities to critical levels.

With the use of submicron devices came the realization

that bulk and thin-film thermal properties differ mark-

edly [2]. However, since no universal behavior is ex-

pected for these differences and since they cannot be

predicted from theory [3], the properties of each material

must be measured individually. Also, as films are typi-

cally layered and deposition techniques differ by manu-

facturer, it is important to measure the interface

resistance of stacked layers [4].

The transient thermo-reflectance method (TTR) [5] is

preferred among the various experimental techniques [6]

used to determine the thermal conductivity of thin-film

and multi-layered materials. The main advantage of the

TTR method is that it is a non-contact and non-

destructive optical approach, both for heating a sample

under test and for probing the variations of its surface

temperature [7]. Because the method is non-invasive, it is

attractive for the measurement of the thermal properties

of thin-layer materials whose investigation by invasive
ed.
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Nomenclature

Fo Fourier number, Fo ¼ as=d2k
F fluence of heating laser irradiation

h thickness of a layer

h� minimal thickness of a semi-infinite layer

IðtÞ heating irradiation intensity, Eq. (3)

k extinction coefficient of a sample material

K thermal conductivity of a sample material

Qabðz; tÞ laser energy absorbed by a sample

R reflectivity of a sample surface

Rs responsivity of the TTR measurement of

K

t time

t0 time at which heating laser intensity reaches

its maximum value

T non-dimensional time, T ¼ t=s
T0:1ðaÞ non-dimensional time at which eH ¼ 0:1
z coordinate that is normal to a sample sur-

face

Z non-dimensional coordinate, Z ¼ z=dk

Greek symbols

a thermal diffusivity of a sample material,

a ¼ K=ðqCpÞ

c absorption coefficient of a sample material,

c ¼ 4pk=k
dk light penetration depth of a heating laser,

dk ¼ 1=c
dP heat penetration depth during a cycle of

heating laser pulse, dP ¼
ffiffiffiffiffi
as

p

dH heat penetration depth of the laser pulse

energy into a sample while eH P 0:1
U ratio of substrate and layer material prop-

erties, U ¼ ðqCpKÞS=ðqCpKÞL
h temperature of a sample

h� reference temperature, h� ¼ F =ðqCpdkÞ
H non-dimensional temperature of a sample,

HðZ; T Þ ¼ hðZ; T Þ=h�eH normalized temperature of a sample surface,eHðT Þ ¼ Hð0; T Þ=Hmax

k wavelength of a heating laser

qCp specific heat of a sample material

rFo measurement uncertainty of Fo number

reH measurement uncertainty of a normalized

temperature

s pulse width of a heating laser

Fig. 1. Problem geometry and important parameters: (a)

heating and probing spots on a sample; and (b) different heat

penetration depths imply either semi-infinite or finite layer

behavior.
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methods would present the difficulties of having to

fabricate a measuring device into a sample, and then

having to isolate and exclude the influence of the mea-

suring device itself.

The basic principle of the transient thermal reflec-

tance method is to heat a sample by laser irradiation and

probe the changes in the surface reflectivity of the heated

material. The schematic in Fig. 1(a) depicts the square

heating and round probing spots produced by the TTR

system built by the authors at SMU (http://engr.

smu.edu/netsl). The source of energy in the TTR method

is normally provided by a pulsed laser with short pulse

duration. During each pulse, a given volume on the

sample surface heats up to a temperature level above

ambient due to the laser light energy absorbed into the

sample. The heating area is specified by adjusting

the pulsing laser aperture and the optics of the system.

The depth of the volumetric heating, on the other hand,

is determined by the optical penetration depth, which is

a function of laser wavelength and surface material

properties. The heating level through the light penetra-

tion depth (dk) obeys an exponential decay law, as de-

scribed later. After each laser pulse is completed, the

sample begins to cool down to the initial ambient tem-

perature. During this process, the probing CW laser

light reflected from the sample surface at the heating

spot center (probing spot in Fig. 1(a)) is collected on a

http://engr.smu.edu/netsl
http://engr.smu.edu/netsl


Table 1

Classification of material samples based on the ratio between

the heat penetration depth and the thickness of the top layer

Thermal

conductivity

behavior

Transient temperature response

behavior

Semi-infinite layer Finite layer

Bulk (I) K ¼ const;

h > dH

(II) K ¼ const;

h < dH
Thin-film (III) K ¼ f ðhÞ;

h > dH

(IV) K ¼ f ðhÞ;
h < dH
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photodetector that reads the instantaneous surface

reflectivity. The changes in surface reflectivity are line-

arly proportional to the changes in surface temperature,

within a wide but finite temperature range [8].

The influence of a pulsed laser irradiation on a given

material depends both on the optical properties of that

material as well as on the wavelength and pulse dura-

tion of the laser itself. Thus, the wavelength and pulse

width are important parameters in the determination of

the effectiveness of the TTR method for different

materials. Although several articles in the literature

address the application of the TTR method for different

stacked materials [9], a systematic investigation of the

influence of the laser wavelength and pulse width on

the performance of the method has not yet been pre-

sented even for the simplest bulk material measure-

ments.

Before proceeding, it is important to define what is

meant by bulk material. Traditionally, a bulk sample, as

opposed to a thin-film sample, has been used to denote a

piece of material that is large enough for its size not to

affect its thermal conductivity. In contrast, a thin-film

sample has at least one of its dimensions in the sub-

micron range and its thermal conductivity (K) is

dependent on the size of that smallest dimension (nor-

mally K decreases as the sample gets thinner) [2]. The

bulk and thin-film terms qualitatively characterize

sample material properties in terms of the atomic

structure of the material and the dimensions of the

sample. As shown by Cahill [2] the thickness of the thin-

film should be less than 10 times that of the mean free

path of the energy carriers of the thin-film material. The

differentiation between bulk and thin-film is of practical

importance because the heat transfer mechanism in thin-

films is influenced by boundary effects on the energy

carriers, and, as a result, is governed by a more complex

heat transfer equation and requires more effort for

analysis than that in bulk. With an ultimate target of

investigating thin-film samples, this work is concerned

with the necessary first step of assessing the performance

and determining the range of applicability of the TTR

method only for bulk materials.

In addition to the bulk and thin-film definitions, two

other terms, semi-infinite and finite layers are introduced

here to characterize the behavior of layers of a sample in

the context of the TTR method (See Table 1 and Fig.

1(b)). Samples of interest are often formed by one or

more layers of different materials deposited on the sub-

strates. Since the TTR method depends on heating a

sample under test with a pulsed laser of a specific pulse

width, the method has a characteristic time associated

with the duration of the temperature response within the

sample. This transient nature of the TTR method in turn

justifies considering a layer of sample as semi-infinite or

finite layer. Specifically, if the overall heat penetration

process experienced during a measurement cycle only
partially involves a particular layer of the sample, this

layer can be considered as a semi-infinite layer, irre-

spective of the structure of the underlying part (left side

of Fig. 1(b)). If, on the other hand, the heat energy

penetrates entirely through a layer, it becomes impera-

tive to take into account the thermal properties of the

material making up the affected layer as well as the

interface resistance between this layer and its neighbors.

As such, the layer of the sample should be classified as

a finite layer (right side of Fig. 1(b)). Additional details

of the approach to classifying samples will be given later.

The ultimate impact of this work would be to extend

the TTR approach for the non-destructive measurement

of the thermal properties of new and existing multi-

layered materials, including metals, semiconductors, and

dielectrics. However, in this first step, the investigation

will focus on applying the TTR method to the mea-

surement of the thermal conductivity of bulk samples

having single semi-infinite or finite layers on the sub-

strate, assuming that the effects of the interface resis-

tance between them are negligible; future work will

incorporate this additional complexity. This first step

will make it possible to determine the method’s range of

applicability, to establish the criterion for distinguishing

between semi-infinite and finite layers on the basis of an

analytical solution of the governing heat transfer system,

and to assess the performance of the TTR method for

the type of layers mentioned above.
2. Heat transfer modeling

The TTR method is useful and applicable for a wide

range of time scales from femtosecond to microsecond.

However, in the femtosecond regime, the governing

physics cannot be described by the Fourier equation

because the heat absorption process involves two stages,

namely, photon–electron interactions in the first hun-

dreds of femtoseconds and electron–phonons thereafter

[10]. In this work, the focus is on the range where the

Fourier equation is applicable, which implies a range of

heating pulse widths on the order of tens of picoseconds

and above.
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Given that the characteristic dimension of the (uni-

formly) heated spot is much larger than both the prob-

ing spot and the heat penetration depth during a

measurement, it is acceptable to describe the physical

problem with the one-dimensional heat equation [11],

qCp
oh
ot

¼ o

oz
K
oh
oz

� �
þ Qabðz; tÞ ð1Þ

The top surface of the sample is considered adiabatic,

i.e., oh=oz ¼ 0 at z ¼ 0; the bottom surface is held iso-

thermal by contact with the chuck, i.e., h ¼ h0 as z ! 1;

and the sample is initially at a uniform temperature, i.e.,

h ¼ h0 at t ¼ 0. In this work, K is assumed to vary mildly

within the temperature ranges considered in the TTR

approach.

In the TTR method, the energy source term, Qabðz; tÞ,
represents heating due to optical absorption, which

follows an exponential decay within the material [12],

Qabðz; tÞ ¼ IðtÞð1	 RÞce	cz ð2Þ

IðtÞ ¼ 2F
s
ffiffiffi
p

p e	4 ðt	t0Þ=sð Þ2 ð3Þ

Eqs. (1)–(3) are applicable to both semi-infinite and fi-

nite layer samples. However, the complexity of their

solutions for a finite layer sample is much higher than

that for a semi-infinite layer sample. Taking this into

account, the heat transfer problem for the former case

has been solved with a numerical simulation, while the

latter case has been solved analytically with a numerical

estimation of the integrals of the final expression. Both

approaches are presented next.

2.1. Semi-infinite layer sample

Considering the semi-infinite layer sample as a uni-

form bulk material, the thermal conductivity tempera-

ture independent, and h0 equal zero, the surface

temperature solution [13] appears as:

hðz; tÞ ¼ a
K

Z t

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4paðt 	 t0Þ

p Z 1

0

Qabðz0; t0Þ

� exp
	ðz	 z0Þ2

4aðt 	 t0Þ

 ! 

þ exp
	ðzþ z0Þ2

4aðt 	 t0Þ

 !!
dz0 dt0 ð4Þ

Since in the TTR method only the surface temperature

can be detected, it is reasonable to simplify the equation

above for the case of z ¼ 0, which yields

hð0; tÞ ¼ a
K

Z t

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
paðt 	 t0Þ

p Z 1

0

Qabðz0; t0Þ

� exp 	z02

4aðt 	 t0Þ

� �
dz0 dt0 ð5Þ
Then, by substituting Eqs. (2) and (3) into Eq. (5), one

can obtain the temperature on the sample surface in

dimensional form:

hð0; tÞ ¼ 2F c

ps
ffiffiffiffiffiffiffiffiffiffiffiffi
qCpK

p Z t

0

exp 	 4 t0	t0

s

	 
2� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt 	 t0Þ

p
�

Z 1

0

exp

��
	 z0 c

�
þ z0

4aðt 	 t0Þ

��
dz0
�
dt0

ð6Þ

By introducing the laser pulse duration, s, as a time

scale, the laser light penetration depth, dk ¼ 1=c, as a

length scale, and h� ¼ F =ðqCpdkÞ as a temperature scale,
it is possible to rewrite the above analytical solution in

non-dimensional form, which will facilitate further

analysis,

Hð0; T Þ 
 hð0; T Þ=h� ¼ 2

p
ffiffiffiffiffi
Fo

p
Z T

0

e	4ðT0	TþT 0Þ2ffiffiffiffiffi
T 0

p

�
Z 1

0

exp

��
	 Z 0 1

�
þ Z 0

4FoT 0

��
dZ 0
�
dT 0

ð7Þ

where Fo ¼ as=d2k is the Fourier number. Examples of

the temperature response for several values of Fo are

shown in Fig. 2(a); the integrals in Eq. (7) have been

evaluated numerically.

Since there is only one parameter that defines the

surface temperature response of a sample, namely the

Fourier number Fo, it is important to clarify the physical
meaning of this parameter. The square-root of the Fo
represents the ratio of the heat penetration depth during

a cycle of heating laser pulse and the optical penetration

depth of heat laser irradiation. This understanding of

the ratio is arrived at by realizing that the thermal

penetration depth during a time period t through a

medium whose thermal diffusivity is a can be estimated

by
ffiffiffiffi
at

p
[12].

2.2. Finite layer sample

In the case of a finite layer sample, the analytical

approach applied for a semi-infinite layer sample is not

beneficial due to the complexity of the solution caused

by the jump in the thermal conductivity value at the

interface between the layer and the substrate. Thus, a

numerical approach is more appropriate for analyzing a

finite layer sample [13]. To do so, the heat equation (1) is

discretized with central finite differences. A Pad�e-based
three-point-backward scheme has been used for time

integration because of its higher accuracy and uncon-

ditional stability [14]. The resulting algorithm is second-

order accurate in both space and time.
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Fig. 2. Influence of Fo on temperature response of a semi-

infinite layer sample: (a) shape and (b) amplitude.
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In order to quantify the accuracy of the numerical

simulation, a grid convergence study was conducted by

obtaining non-dimensional temperature responses of a

representative problem with different values of grid size

DZ. The problem geometry chosen is a stacked sample

consisting of an Si substrate covered with 1 lm of SiO2,

which in turn is covered with 1.5 lm of Au. The maxi-

mum error relative to the response obtained with the

smallest grid spacing, DZ ¼ 10 �A, are listed in Table 2

for a range of six larger grid sizes. Since negligible error

levels of 0.04% are obtained at DZ ¼ 20 �A, all sub-
sequent computations were conducted with a grid size of

10 �A.
Table 2

Convergence of the numerical simulation for a stacked sample

DZ (�A) 640 320 160

Peak error (%) 7.3 3.8 1.4
3. Results and discussion

3.1. Semi-infinite layer sample

It is useful to begin by analyzing the less complicated

case of a semi-infinite layer sample, i.e., a bulk piece of a

given material of interest. The form of Eq. (7) suggests

that there are two ways of extracting the unknown

thermal conductivity from the measured experimental

data. The first approach is based on the dependence of

the maximum temperature Hmax upon the Fo number

(Fig. 2(b)); as such, this approach can be referred to as

the ‘‘amplitude’’ method. It requires (i) mapping the

output of the photodiode signal to the actual tempera-

ture response by the use of an independent calibration

curve that relates the surface temperature and reflectiv-

ity of the sample; (ii) calculating the reference temper-

ature h� with known values of the laser fluence F and

qCp of the material under test; and (iii) extracting

K ¼ FoqCpd
2
k=s from the value of Fo obtained by the use

of the relationship shown graphically in Fig. 2(b). The

‘‘amplitude’’ method appears to be useful only in those

cases where the calibration curve is obtained with high

accuracy. Unfortunately, the change in material reflec-

tivity is a weak function of changes in surface temper-

ature, namely, around 10	4–10	5 K	1, which leads to

low accuracy for the calibration curve, and conse-

quently, unsatisfactory uncertainty levels of the

‘‘amplitude’’ approach in most situations.

In order to eliminate these difficulties, many investi-

gators use instead a normalized photodiode response,

which can be obtained by dividing the regular output

signal by the maximum value of that signal [15]. Given

the linear dependence between changes in reflectivity

and changes in temperature [16], which holds true for

reasonable temperature ranges, a normalized photo-

diode response would equal a normalized temperature

response, avoiding the need for calibration curves and

their associated higher levels of uncertainty. Thus, in-

stead of relying on the dependence of the temperature on

the Fo number, this latter approach deals with the

dependence of the response shape, and is hence referred

to as the ‘‘shape’’ method. The influence of Fo on the

normalized temperature response is shown in Fig. 2(a).

For a given semi-infinite layer material of known qCp

and light penetration depth dk, and a given laser

with known pulse width s, it becomes possible to extract
the thermal conductivity of that material from

K ¼ FoqCpd
2
k=s by varying Fo until the experimental
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0.48 0.09 0.04 –



R
es

po
ns

iv
ity

, R
s

U
nc

er
ta

in
ty

,%

10-2 10-1 100 101 1020.00

0.05

0.10

0.15

0

5

10

15

20

25

30

Fourier number, Fo

Fourier number, Fo

N
on

di
m

en
si

on
al

 la
ye

r t
hi

ck
ne

ss
, h

/δ
λ

10-2 10-1 100 101 1020

10

20

30

40

50

60

70

Finite layer sample

Semi-infinite layer sample

(a)

(b)

Fig. 3. Influence of Fo in the TTR method: (a) responsivity

(solid) and measurement uncertainty (dashed); and (b) classifi-

cation of ‘‘semi-infinite layer’’ and ‘‘finite layer’’ samples.

3238 P.L. Komarov, P.E. Raad / International Journal of Heat and Mass Transfer 47 (2004) 3233–3244
data and the corresponding analytical solution (Eq. (7))

agree in the RMS sense (in other words, by minimizing

the standard deviation, rM, between the measured and

calculated temperature responses).

The curves in Fig. 2(a) also suggest that for an

acceptable measurement accuracy, the Fo number can-

not exceed some maximum value. Otherwise, the devi-

ation between the temperature response and the limiting

lower curve (i.e., Fo ¼ 1) becomes smaller than the

experimental uncertainty of the measurements. Taking

into account that measurement accuracy is the most

essential characteristic of any experimental method, it is

important to analyze in detail the responsivity of the

‘‘shape’’ approach, since responsivity is directly related

with the measurement accuracy.

First, the definition of the responsivity of the ‘‘shape’’

approach must be introduced. According to the common

definition, the relative responsivity, Rs is ðx � dyÞ=ðy � dxÞ,
where y is a measured response caused by a specified

value of an independent variable x. Normally, for the
TTR method, x is the thermal conductivity, K. However,
keeping in mind that in the non-dimensional Eq. (7), K is

embedded into Fo, the latter can be considered as x, while
y is the normalized temperature response eHðT Þ ¼
Hð0; T Þ=Hmax. Since eHðT Þ is not a single value, but rather
a function of time characterized by the capabilities of the

experimental setup, it is preferable to define the respon-

sivity Rs of the ‘‘shape’’ approach as Foðd eHðT Þ=dFoÞmax
within the time domain specified by the TTR measure-

ment cycle. The results of numerically differentiating Eq.

(7) indicate that the responsivity Rs tends to a maximum

asymptotic value Rsmax ¼ 0:125 for low values of Fo and
decays to zero as Fo ! 1. The behavior of the respon-

sivity Rs as a function of the Fo number is shown as a

solid curve in Fig. 3(a). The responsivity of the TTR

‘‘shape’’ approach falls below 20% of the maximum

value, Rsmax, at Fo ¼ 100, which means that the approach

fails for Fo > 100. In order to achieve the best respon-

sivity for the method, measurements should be carried

out at as small an Fo value as practically possible.
The obtained responsivity curve is very helpful for

estimating the random measurement uncertainty of the

TTR method. Indeed, if some particular TTR measure-

ment system has an apparatus uncertainty, reH (defined

by random deviation of the normalized temperature re-

sponse from one set to another), and a matching uncer-

tainty, rM (defined by the TTR fitting procedure), then

the measurement uncertainty of the Fo number becomes
rFo ¼ Rs	1MaxðreH ; rMÞ. For example, the TTR system

in the NETS laboratory at SMU has a reH � 0:0074,
which yields a minimum measurement uncertainty for

the thermal conductivity, K, of about 6%, assuming that
rM < reH and that the uncertainties associated with qCp,

dk, and s are negligible as compared to rFo. As implied by

the dashed line curve in Fig. 3(a), the measurement

uncertainty increases with increasing Fo. For Fo > 10,
the measurement uncertainty of the present setup exceeds

15%, which, depending on the application, could be

considered as inappropriately high.

A key presupposition in the solution of the problem

described above is that the top layer of the sample should

be thick enough, or, mathematically speaking, it has to be

a semi-infinite medium. From a practical point of view,

the question becomes ‘‘when can a sample under test be

considered as a semi-infinite layer sample of a particular

material for the characteristics of a given experimental

system?’’ Otherwise, the sample should be considered as

having a finite layer, or a stack of finite layers, requiring a

different and more complicated solution of the heat

transfer problem than that given by Eq. (7) for deter-

mining the temperature response. The answer is tied to a

specific criterion for the thickness of the top layer, which

makes it possible to distinguish the two cases from each

other. For this purpose, it is useful to introduce a spatial

limitation involving the penetration depth of the laser

pulse energy through a sample, dH, at which the surface

temperature response has nearly disappeared (i.e.,eH ¼ 0:1). If the depth, dH, is smaller than the thickness of
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the top layer, h, the sample can be considered as a semi-

infinite layer sample (see Fig. 1(b)). This criterion com-

bined with the relationship of the heat penetration depth

with time, d ¼
ffiffiffiffi
at

p
, yields an expression for the limiting

thickness that distinguishes the ‘‘semi-infinite layer’’

from the ‘‘finite layer’’ cases; namely,

h�

dk
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo � T0:1ðFoÞ

p
ð8Þ

where T0:1ðFoÞ is the non-dimensional time at whicheH ¼ 0:1. The corresponding limiting curve within the Fo
range from 0.01 through 100 is provided in Fig. 3(b). All

samples with the top layer thickness above the limiting

curve are semi-infinite layer samples while those below

the curve should be considered as finite layer samples.

Increasing the Fo causes the limiting value, h�=dk, to

increase. At low values of the Fo number, the limiting

thickness asymptotically decreases to h�=dk � 7. This

fact indicates that the pulsed laser heat energy penetrates

into a semi-infinite layer sample by a distance that is at

least seven times deeper than the corresponding optical

laser irradiation.

Additionally, it should be noted that the above lim-

iting criterion does not depend only on material prop-

erties, but also on the laser pulse duration. The

important implication is that the same sample can be

considered either a semi-infinite layer or a finite layer

sample, depending on the heating laser being used. This

issue has been well illustrated by the authors of Ref. [12],

for example, where the femtosecond TTR method was

applied to thin-metal layers (�100 nm) without any

evidence of thermal interaction with the substrate

underneath the thin metal.
3.2. Finite layer sample

Using the above criterion (Eq. (8)), it is possible to

determine if a given sample can be treated as a finite

layer case (right side of Fig. 1(b)). If so, then one is more

likely to solve the heat transfer problem (Eq. (1))

numerically due to the complexity of the analytical

solution for the finite layer sample. The normalized

temperature response and the responsivity become

functions of the material properties of both the layer and

the substrate as well as the geometry of the sample (layer

thickness), as opposed to the semi-infinite layer case for

which the temperature response and the responsivity are

functions of Fo only. However, there is a way to simplify
the analysis of the finite layer problem for some cases.

Indeed, consider the heat energy accumulated in a

sample over a period of time t, assuming that t is long
enough to allow the heat to propagate through the top

layer and into the substrate. For a square unit of the

sample surface, the total energy accumulated in the

sample under test can be expressed as
EðtÞ ¼ ðqCpÞL
Z h

0

hðt; zÞdzþ ðqCpÞS
Z hþd

h
hðt; zÞdz ð9Þ

Here, the first term is the energy accumulated in the

layer while the second term represents the energy accu-

mulated in the substrate. The depth, d, to which the heat
reaches into the substrate can be estimated as d ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aSðt 	 t0Þ
p

, where t0 ¼ h2=aL is the time required for the

heat to propagate through the layer. Now, by applying

the integral mean value theorem,
R z2
z1

hðt; zÞdz ¼ �hðtÞ �
ðz2 	 z1Þ, to the integrals in Eq. (9) and replacing h and d
with their estimates shown above, it is possible to ex-

press the accumulated energy in the following form:

EðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqCpKÞLt0

q
�hLðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqCpKÞSðt 	 t0Þ

q
�hSðtÞ ð10Þ

For further analysis, it is reasonable to assume that all

laser pulse energy has been absorbed by a time tmax at
which �hLðtÞ reaches its maximum value �hLmax. Hence, for

any time t > tmax the equality EðtÞ ¼ EðtmaxÞ holds true,
given the reasonable assumption that losses from the

surface due to free convection and radiation are negli-

gible. Evaluating Eq. (10) at t and tmax, substituting the

resulting expressions into the energy equality, and finally

dividing the resulting equation by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqCpKÞLt0

p
�hLmax, one

obtains the following formula for the normalized mean

value temperature response of the layer:

�hLðtÞ
�hLmax

¼ 1þ ðqCpKÞS
ðqCpKÞL

� �1
2 tmax

t0

	"
	 1

1

2 �hSðtmaxÞ
�hLmax

	 t
t0

	
	 1

1

2 �hSðtÞ
�hLmax

#
ð11Þ

Despite the fact that the above formula is quite difficult

for practical use (since the terms in the square brackets

may not be readily available), this equation indicates

that the normalized mean value temperature response of

the layer is a function of the ratio of the physical

properties of the materials that make up the sample, i.e.,

ðqCpKÞS=ðqCpKÞL. For simplicity, this ratio will be re-

ferred to hereafter as U. It is clear that for highly con-

ductive layers the normalized temperature response of

the sample surface (which is what the TTR method de-

tects) would behave in a similar way as the normalized

mean value response, �hLðtÞ=�hLmax. In such cases, one

discovers that a non-dimensional parameter, U, governs
the heat transfer problem in the finite layer. Indeed, in

such a situation the mean temperature of the highly

conductive layer is almost equal to the surface temper-

ature, �hLðtÞ � hðt; 0Þ. The evaluation of the applicability

of this discovery to a wider range of material combina-

tions (in which the properties ratio, U, can be used as a

governing parameter in the performance evaluation of

the TTR method) is an important and potentially very

useful result that will be examined in detail in the

remainder of this article.



Table 3

Properties of the samples utilized in the comparison computations

Sample Materials qCp (J/m
3 K) K (W/mK) h (�A) h=dPa ðqCpKÞS=ðqCpKÞL

1 (Real) Si substrate 1.65· 106 149 200,000 0.48 0.312

Au layer 2.50· 106 315 5,000

2 (Artificial) Substrate 3.30· 106 49.7 200,000 0.48 0.312

Layer 0.833· 106 630 12,240

a dP was calculated for s ¼ 8:6 ns, the pulse width in the SMU setup.
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surement responsivity.
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In addition to the ratio U, the ratio of the layer

thickness h and the heat penetration depth during a

pulse dP provides another dimensionless governing

parameter (h=dP) that is derived from the transient

nature of the heat source (laser pulse) and the geometry

of the sample. In order to confirm that the two afore-

mentioned parameters are sufficient to entirely define the

heat transfer process within a finite layer, we consider

two samples, described in Table 3, that are entirely dif-

ferent but whose property ratios and dimensionless layer

thicknesses are otherwise identical. The normalized

temperature responses for the two samples, shown in

Fig. 4(a), were obtained with the numerical simulation

technique described previously in the heat transfer

modeling section. As evident in Fig. 4(a), the normalized

temperature responses of the samples match perfectly

despite the differences in their material properties and

layer thicknesses. This result proves that the temperature

response is a function of only the properties ratio, U,
and the non-dimensional layer thickness, h=dP.

It is worth investigating at this point whether the

same two governing parameters also completely define

the behavior of the responsivity, Rs ¼ Kðd eHðT Þ=
dKÞmax, which was introduced earlier for a semi-infinite

layer sample. The TTR method can measure the thermal

conductivity of one unknown material at a time. In the

case of a layer and a substrate, the thermal conductivity

of either material can be determined as long as the other

one is known. However, the responsivity of measuring

the thermal conductivity of the layer need not be the

same as that associated with measuring the substrate. To

check this suspicion, the responsivity curves for the two

samples in Table 3 were obtained as a function of the

non-dimensional thickness of the layer and plotted in

Fig. 4(b). Since there are two materials making up each

sample and since, as previously mentioned, the TTR

system can provide the thermal conductivity of only one

material at a time, four curves are obtained. The results

presented in Fig. 4(b) correspond to the cases where K of

the substrate material is under test (thin lines) or where

K of the layer is under test (bold lines). Analysis of the

results shows that a different responsivity curve is ob-

tained depending on the case considered, i.e., whether

the layer or the substrate is the unknown. However, for

each case, the responsivity curves of the two samples

(Table 3) are perfectly matched within the range of the
given layer thickness, proving again that the heat

transfer process in a finite layer is governed only by the

two non-dimensional parameters introduced above.

The results in Fig. 4(b) also indicate that a maximum

responsivity is possible for a specific layer thickness,

irrespective of which material is under test. This is an

important discovery since the main interest of this

investigation is to maximize the responsivity of the TTR
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measurements for given materials and measurement

system design. But, the existence of a maximum at a

specific non-dimensional layer thickness also suggests

that the maximum value of the responsivity and the

optimal thickness of the layer (at which the maximum

value occurs) are a function of the single similarity

parameter U. It is important to determine next the range
of property values for which the previous proven

hypothesis holds true. Since this problem represents a

four dimensional parameter space (qCp and K for both

layer and substrate), it is impractical to consider all

possible combinations of layer and substrate material

properties by varying one single parameter at a time.

Rather, it was decided to follow a more practical and

equally predictive two-step process. First, select a rep-

resentative conductive layer (which would be expected to

comply with the hypothesis) and investigate the broad

range of substrate material properties. Then, use a

Monte Carlo type approach to randomly select combi-

nations of layer and material properties and determine if

the resulting data fit the behavior obtained in the first

step. Inherent in this logic is the potential for discovery

of the ranges of material properties where the resulting

behavior would either obey or deviate from the single

parameter similarity solution, which is the desired out-

come of this investigation.

Hence, a conductive layer material in the mid-range

of metals was chosen as a reference with ðqCpÞL ¼
2:5� 106 J/m3 K and KL ¼ 100 W/mK. Then, the sub-

strate material specific heat, ðqCpÞS, was varied within

the range 	0:56 logððqCpÞS=ðqCpÞLÞ6 1:0, with a log-

arithmic step of 0.1, while the substrate material thermal

conductivity, KS, was varied within the range 	3:06
logðKS=KLÞ6 1:0, with a logarithmic step of 0.1. As ex-

pected, the computational data resulting from the 656

simulations were found to collapse into lines within an

uncertainty of less than 1%. In Fig. 5(a), the data ob-

tained for the case when the substrate material is un-

known are shown as solid and dashed lines for Rsmax
and hmax=dP, respectively (the symbols will be discussed

in a later section). Fig. 5(b) shows similar data for the

case when the layer material is unknown. The existence

of a single line fit strongly confirms the existence of the

universal behavior, i.e., that the heat transfer problem is

governed by the single parameter U.
The second step in the two-step process is to check

whether this apparent universal behavior is true for

other highly diffusive materials. As previously discussed,

repeating the investigation for a large number of layer

materials would be impractical given the considerable

number of computations for different values of U that

would need to be run for each choice of layer material.

Instead, by randomly choosing an appropriately large

number of combinations of the four properties that

make up each U value, it would be possible to cover the

full spectrum of useful K and qCp ranges. Consequently,
the investigation was performed for 1000 different ran-

dom combinations of values of K 2 ½0:1; 1000� W/mK

and qCp 2 ½0:8� 106; 25� 106� J/m3 K. Examination of

the results revealed that data obtained from cases where

the diffusivity of the layer is greater than 5· 10	6 m2/s

fall right on the (solid and dashed) lines in Fig. 5(a) and

(b), while data obtained from cases where the layer is

less diffusive deviate drastically from the single param-

eter similarity solutions. The data for a > 5� 10	6 m2/s

are superimposed as symbols on Fig. 5(a) and (b). The

uncertainty envelopes for the responsivity and optimal

thickness curves were ±5% and ±7%, respectively.

In conclusion, the above analysis confirms the dis-

covery of the existence of a universal behavior of the

maximum responsivity and the optimum layer thickness

that depends only on the single variable U ¼ ðqCpKÞS=
ðqCpKÞL over a wide range of substrate material prop-

erties and a diffusivity-limited range of layer material

properties. It should be pointed out, however, that the

lower limit of a ¼ 5� 10	6 m2/s includes the entire range

of metals used in microelectronics.

Before examining the implications of the above

discovery on the optimization of the TTR method, the
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results of Fig. 5 are described in more detail. Consider

first the responsivity behavior of a substrate material

under test (Fig. 5(a)). The maximum responsivity devi-

ates around a mean of 0.125 within almost the entire

investigated range of material properties ratio. The

exception occurs at ratio values above 1, when the

maximum responsivity goes down monotonically to

�0.09 at U ¼ 100. The corresponding data of the opti-

mal layer thickness vary more dramatically. The curve

has a plateau within the range of 0.01–0.1, and decreases

in both directions outside of this range, but more shar-

ply at lower values of U. It is worth mentioning that the

optimal layer thickness never exceeds the heat penetra-

tion depth during a pulse, dP.
Consider next the responsivity behavior when the

layer material is unknown (Fig. 5(b)). The responsivity

curve has a minimum value when the qCpK product is

the same for both substrate and layer materials, i.e.,

U ¼ 1. At this point, the value of the responsivity is

identical to the maximum value obtained for an un-

known substrate material (Fig. 5(a)). From this minimal

value the curve increases in either direction, with the

maximum responsivity reaching significant values as

high as 0.29, which is more than twice the maximum

observed in the case of a semi-infinite layer sample (Fig.

3(a)). For small values of the material properties ratio

(U < 1), the optimal thickness also increases and even

surpasses the heat penetration depth value, dP, at

U ¼ 0:2. Increasing U above unity causes the respon-

sivity to increase and the optimal thickness to decrease.

After comparison of the above cases, it is possible to

conclude that the TTR measurement of the conductivity

of a layer material is more accurate than the measure-

ment of a substrate material. Indeed, the maximum re-

sponsivity values of the former case exceed those of the

latter case in all of the explored range of U. For small
values of U, the advantage can be by more than a factor

of 2.

To conclude this article, three examples are given

briefly to demonstrate the usefulness of the results. The

first attempts to anticipate a potential question regard-

ing the interesting material combination where both the

layer and the substrate are made up of the same mate-

rial, i.e., when U ¼ 1. Specifically, what should be ex-

pected when a finite layer of gold is deposited on a bulk

gold substrate. From the finite layer approach described

above, the expected measurement responsivity for the

thin layer of gold should be 0.13 (Fig. 5(a)), which is

sufficiently high. Fig. 6(a) presents the normalized tem-

perature response of the gold sample along with the

responses obtained by varying the conductivity of the

substrate by ±20%. The observed deviation of the re-

sponse corresponds to the normal appropriate sensitivity

of the TTR method (see, e.g., [15]).

However, given that both the layer and the substrate

are made of gold, the aforementioned finite layer sample
can be treated as a semi-infinite layer sample. If treated as

such, the Fo number would be on the order of a thou-

sand, which would result in a measurement responsivity

of approximately zero (Fig. 3(a)). At first glance, this

situation is paradoxical since for the same exact sample, a

TTR measurement is impossible from one perspective

while from another the measurement is not only possible

but can be done with an appropriate level of accuracy.

The apparent paradox can be simply resolved by realiz-

ing that in the semi-infinite layer treatment only one

material can be handled (the one whose thermal con-

ductivity needs to be measured). In the finite layer

treatment there are two materials (layer and substrate),

even if they are chemically identical, and only the con-

ductivity of the substrate material is varied in the

matching procedure of the TTR method since all prop-

erties of the layer material are supposed to be known.

Thus, the sample accumulates the heating energy into the

upper region whose properties are known and releases
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that energy into the unknown material of the underlying

substrate. Conversely, when the sample is treated as

semi-infinite, both the accumulation and dissipation of

the energy occur in the same material, whose thermal

property is under test and hence is unknown. Conse-

quently, it is not possible to extract the conductivity since

the measurement problem is equivalent to a mathemat-

ical problem with a single equation and two unknowns.

The second example demonstrates another important

outcome of this investigation; namely, that more accu-

rate TTR measurements of a highly conductive material

(e.g., gold) can be done if an optimal thickness of such a

metal is deposited on a substrate of low and known

conductivity (e.g., silicon dioxide). In such a case, the

responsivity of the measurements can be doubled to 0.28

(Fig. 5(b)) by an appropriate choice of the thickness of

the gold layer. Indeed, the temperature response of the

optimal 1.2 lm gold layer deposited on a silicon dioxide

substrate exhibits very high sensitivity as evident from

the spread between the ±20% (dashed) curves in Fig. 6(a).

The third example illustrates how even supercon-

ductive materials like diamond can be measured suc-

cessfully with a responsivity value of 0.12 (Fig. 5(a)), if

the metallization layer covering it has an optimal

thickness and well-known optical and thermal properties

(e.g., gold). A responsivity value of 0.12 is sufficiently

high as can be ascertained by examining Fig. 6(b) which

presents the normalized temperature response of the

gold-covered diamond sample bounded by the temper-

ature responses obtained by varying the conductivity of

the diamond by ±20%.

However, the results summarized in Fig. 5(b) indicate

that more significant gains in the responsivity (of up to a

value of 0.29) can be obtained by depositing a diamond

layer with an optimal thickness on silicon dioxide, for

example. Since diamond is a transparent material, a

metallization layer (e.g., gold) is required on top of it in

order to absorb the energy of the pulsed laser. The

temperature response for the gold-covered diamond

layer on an SiO2 substrate is shown in Fig. 6(b) bounded

by the responses associated with the ±20% deviation in

the conductivity of diamond. Although the thickness of

the gold layer in this example was chosen to be thin (500
�A) so as not to change the responsivity of the mea-

surement, a more detailed analysis of its impact on the

problem would be desirable. However, such an analysis

would have to deal with two layers of different materials

on the substrate, which is beyond the scope of the

present work and part of a forthcoming investigation.
4. Conclusions

A one-dimensional analytical solution of heat trans-

fer in a bulk, semi-infinite layer sample was derived in

non-dimensional form in order to analyze the tempera-
ture response of the sample’s surface. Most importantly,

it was shown that the shape of the temperature response

can be uniquely described by a single parameter, namely

the Fo number. The analytical solution shows that the

‘‘amplitude’’ approach for extracting the thermal con-

ductivity from experimental data leads to high uncer-

tainty because of the necessity to obtain a calibration

curve of temperature versus reflectivity. In contrast, the

‘‘shape’’ approach does not require prior calibration,

and is therefore more attractive for thermal conductivity

measurements.

On the basis of the analytical solution, it was also

possible to determine both the responsivity of the TTR

method and the measurement uncertainty of a particular

TTR system. That, in turn, revealed the range of

applicability of the ‘‘shape’’ method, namely, Fo < 100

for any TTR method and Fo < 10 for the particular

TTR system used in the authors’ laboratory. The TTR

method provides the maximum accuracy for Fo < 0:1,
which corresponds to a maximum responsivity value of

Rsmax ¼ 0:125. The introduction of the heat penetration

depth ðdH) of the laser pulse energy provides a basis for
classifying a given sample that has a top layer whose

thickness is larger than dH as a semi-infinite layer sam-

ple. Specifically, the thickness of a semi-infinite layer

should be at least seven times larger than the light

penetration depth (dk) of the irradiation produced by the

heating laser. Otherwise, the sample should be classified

as a finite layer sample.

While the main approach to the heat transfer prob-

lem of a finite layer sample is numerical, a simplified

analytical analysis of the problem has revealed two

essential parameters, namely, the ratio of the physical

properties of the materials that make up the sample,

U ¼ ðqCpKÞS=ðqCpKÞL, and the dimensionless layer

thickness, h=dP, which together entirely define the

behavior of the normalized temperature response as well

as the responsivity of the conductivity measurement.

Since it was discovered that the responsivity, Rs, exhibits

a maximum at a specific (optimal) layer thickness of a

finite layer sample, it becomes possible to tie the maxi-

mum responsivity, Rsmax, and the optimal thickness,

hmax=dP, to the properties ratio, U, for both cases when

the layer material or the substrate material are under

test. For each case, two universal relationships were

obtained relating Rsmax and hmax=dP to U over wide

ranges of specific heat values, qCp 2 ½0:8� 106; 25� 106�
J/m3 K, and thermal conductivity values, K 2 ½0:1; 1000�
W/mK. It was determined that the applicability of those

relationships is limited by the inequality K=qCp >
5� 10	6 m2/s for the layer properties, which nevertheless

covers the range of useful microelectronics materials.

The main conclusion of the findings associated with

finite layer samples is that the TTR measurement per-

formance (maximum responsivity) is higher if the mate-

rial under test is a layer rather than a substrate. For
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example, the use of diamond as a layer on a silicon dioxide

substrate (with thin gold metallization for the light

absorption) increases the measurement accuracy by a

factor of two as compared with the case where the dia-

mond is a substrate covered by an optimal layer of gold.
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